Primitives usuelles:

f(x) =	Primitive F de f	Définie sur
k avec $k \in \mathbb{R}$ fixé	F(x) = kx	\mathbb{R}
x^{α} avec $\alpha \in \mathbb{R} \setminus \{-1\}$ fixé	$F(x) = \frac{x^{\alpha+1}}{\alpha+1}$	ℝ ou ℝ*
$\frac{1}{x^n} \text{ avec } n \in \mathbb{N}^* \setminus 1$	$\frac{-1}{(n-1)x^{n-1}}$	\mathbb{R}^*
$\frac{1}{x+a} \text{ avec } a \in \mathbb{R} \text{ fix\'e}$	$F(x) = \ln x + a $	$\mathbb{R}\setminus\{-1\}$
$\frac{1}{\sqrt{x}}$	$F(x) = 2\sqrt{x}$	$]0;+\infty[$
e^x	$F(x) = e^x$	\mathbb{R}
$\cos x$	$F(x) = \sin x$	\mathbb{R}
$\sin x$	$F(x) = -\cos x$	\mathbb{R}
$1 + \tan^2(x)$	$F(x) = \tan(x)$	$]-rac{\pi}{2};rac{\pi}{2}[$
$\frac{1}{1+x^2}$	$F(x) = \arctan(x)$	\mathbb{R}
$\frac{1}{a^2 + x^2}$	$F(x) = \frac{1}{a}\arctan\left(\frac{x}{a}\right)$	\mathbb{R}

Si u est une fonction dérivable :

Fonction f	Primitive F	Condition sur u
$u'(ax+b)$ avec $(a,b) \in \mathbb{R}^2$	$\frac{1}{a}u(ax+b)$	
$u'(x)u^n(x)$ avec $n \in \mathbb{Z} \setminus \{-1\}$	$\frac{u^{n+1}(x)}{n+1}$	u ne s'annule pas si $n < 0$
$\frac{u'(x)}{u(x)}$	$\ln(u(x))$	u est à valeurs dans \mathbb{R}_+^*
$u'(x) e^{u(x)}$	$e^{u(x)}$	
$\frac{u'(x)}{\sqrt{u(x)}}$	$2\sqrt{u(x)}$	u est à valeurs dans \mathbb{R}_+^*
$u'(x)\cos(u(x))$	$\sin(u(x))$	
$u'(x)\sin(u(x))$	$-\cos(u(x))$	